3.6.91 \(\int \frac {\sqrt {\cos (c+d x)}}{(a+b \cos (c+d x))^2} \, dx\) [591]

3.6.91.1 Optimal result
3.6.91.2 Mathematica [A] (verified)
3.6.91.3 Rubi [A] (verified)
3.6.91.4 Maple [B] (verified)
3.6.91.5 Fricas [F(-1)]
3.6.91.6 Sympy [F(-1)]
3.6.91.7 Maxima [F]
3.6.91.8 Giac [F]
3.6.91.9 Mupad [F(-1)]

3.6.91.1 Optimal result

Integrand size = 23, antiderivative size = 148 \[ \int \frac {\sqrt {\cos (c+d x)}}{(a+b \cos (c+d x))^2} \, dx=\frac {E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{\left (a^2-b^2\right ) d}+\frac {a \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{b \left (a^2-b^2\right ) d}-\frac {\left (a^2+b^2\right ) \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{(a-b) b (a+b)^2 d}-\frac {b \sqrt {\cos (c+d x)} \sin (c+d x)}{\left (a^2-b^2\right ) d (a+b \cos (c+d x))} \]

output
(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2* 
c),2^(1/2))/(a^2-b^2)/d+a*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)* 
EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/b/(a^2-b^2)/d-(a^2+b^2)*(cos(1/2*d*x 
+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2*b/(a+b 
),2^(1/2))/(a-b)/b/(a+b)^2/d-b*sin(d*x+c)*cos(d*x+c)^(1/2)/(a^2-b^2)/d/(a+ 
b*cos(d*x+c))
 
3.6.91.2 Mathematica [A] (verified)

Time = 2.61 (sec) , antiderivative size = 229, normalized size of antiderivative = 1.55 \[ \int \frac {\sqrt {\cos (c+d x)}}{(a+b \cos (c+d x))^2} \, dx=\frac {\frac {4 b \sqrt {\cos (c+d x)} \sin (c+d x)}{\left (-a^2+b^2\right ) (a+b \cos (c+d x))}-\frac {2 \left (-\frac {b^2 \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{a+b}+2 a \left (2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )-\frac {2 a \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{a+b}\right )+\frac {\left (-2 a b E\left (\left .\arcsin \left (\sqrt {\cos (c+d x)}\right )\right |-1\right )+2 a (a+b) \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\cos (c+d x)}\right ),-1\right )+\left (-2 a^2+b^2\right ) \operatorname {EllipticPi}\left (-\frac {b}{a},\arcsin \left (\sqrt {\cos (c+d x)}\right ),-1\right )\right ) \sin (c+d x)}{a \sqrt {\sin ^2(c+d x)}}\right )}{b (-a+b) (a+b)}}{4 d} \]

input
Integrate[Sqrt[Cos[c + d*x]]/(a + b*Cos[c + d*x])^2,x]
 
output
((4*b*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/((-a^2 + b^2)*(a + b*Cos[c + d*x])) 
 - (2*(-((b^2*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(a + b)) + 2*a*(2 
*EllipticF[(c + d*x)/2, 2] - (2*a*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2 
])/(a + b)) + ((-2*a*b*EllipticE[ArcSin[Sqrt[Cos[c + d*x]]], -1] + 2*a*(a 
+ b)*EllipticF[ArcSin[Sqrt[Cos[c + d*x]]], -1] + (-2*a^2 + b^2)*EllipticPi 
[-(b/a), ArcSin[Sqrt[Cos[c + d*x]]], -1])*Sin[c + d*x])/(a*Sqrt[Sin[c + d* 
x]^2])))/(b*(-a + b)*(a + b)))/(4*d)
 
3.6.91.3 Rubi [A] (verified)

Time = 0.93 (sec) , antiderivative size = 136, normalized size of antiderivative = 0.92, number of steps used = 12, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.522, Rules used = {3042, 3275, 27, 3042, 3538, 25, 3042, 3119, 3481, 3042, 3120, 3284}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {\cos (c+d x)}}{(a+b \cos (c+d x))^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}{\left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^2}dx\)

\(\Big \downarrow \) 3275

\(\displaystyle -\frac {\int \frac {-b \cos ^2(c+d x)-2 a \cos (c+d x)+b}{2 \sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{a^2-b^2}-\frac {b \sin (c+d x) \sqrt {\cos (c+d x)}}{d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\int \frac {-b \cos ^2(c+d x)-2 a \cos (c+d x)+b}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{2 \left (a^2-b^2\right )}-\frac {b \sin (c+d x) \sqrt {\cos (c+d x)}}{d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\int \frac {-b \sin \left (c+d x+\frac {\pi }{2}\right )^2-2 a \sin \left (c+d x+\frac {\pi }{2}\right )+b}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{2 \left (a^2-b^2\right )}-\frac {b \sin (c+d x) \sqrt {\cos (c+d x)}}{d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3538

\(\displaystyle -\frac {-\frac {\int -\frac {b^2-a b \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{b}-\int \sqrt {\cos (c+d x)}dx}{2 \left (a^2-b^2\right )}-\frac {b \sin (c+d x) \sqrt {\cos (c+d x)}}{d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\frac {\int \frac {b^2-a b \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{b}-\int \sqrt {\cos (c+d x)}dx}{2 \left (a^2-b^2\right )}-\frac {b \sin (c+d x) \sqrt {\cos (c+d x)}}{d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {\int \frac {b^2-a b \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{b}-\int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{2 \left (a^2-b^2\right )}-\frac {b \sin (c+d x) \sqrt {\cos (c+d x)}}{d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3119

\(\displaystyle -\frac {\frac {\int \frac {b^2-a b \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{b}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{2 \left (a^2-b^2\right )}-\frac {b \sin (c+d x) \sqrt {\cos (c+d x)}}{d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3481

\(\displaystyle -\frac {\frac {\left (a^2+b^2\right ) \int \frac {1}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx-a \int \frac {1}{\sqrt {\cos (c+d x)}}dx}{b}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{2 \left (a^2-b^2\right )}-\frac {b \sin (c+d x) \sqrt {\cos (c+d x)}}{d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {\left (a^2+b^2\right ) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx-a \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{2 \left (a^2-b^2\right )}-\frac {b \sin (c+d x) \sqrt {\cos (c+d x)}}{d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3120

\(\displaystyle -\frac {\frac {\left (a^2+b^2\right ) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx-\frac {2 a \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}}{b}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{2 \left (a^2-b^2\right )}-\frac {b \sin (c+d x) \sqrt {\cos (c+d x)}}{d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3284

\(\displaystyle -\frac {b \sin (c+d x) \sqrt {\cos (c+d x)}}{d \left (a^2-b^2\right ) (a+b \cos (c+d x))}-\frac {\frac {\frac {2 \left (a^2+b^2\right ) \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{d (a+b)}-\frac {2 a \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}}{b}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{2 \left (a^2-b^2\right )}\)

input
Int[Sqrt[Cos[c + d*x]]/(a + b*Cos[c + d*x])^2,x]
 
output
-1/2*((-2*EllipticE[(c + d*x)/2, 2])/d + ((-2*a*EllipticF[(c + d*x)/2, 2]) 
/d + (2*(a^2 + b^2)*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/((a + b)*d) 
)/b)/(a^2 - b^2) - (b*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/((a^2 - b^2)*d*(a + 
 b*Cos[c + d*x]))
 

3.6.91.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3275
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[e + f*x]*(a + b*Sin[e + f*x] 
)^(m + 1)*((c + d*Sin[e + f*x])^n/(f*(m + 1)*(a^2 - b^2))), x] + Simp[1/((m 
 + 1)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^ 
(n - 1)*Simp[a*c*(m + 1) + b*d*n + (a*d*(m + 1) - b*c*(m + 2))*Sin[e + f*x] 
 - b*d*(m + n + 2)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, 
x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, 
 -1] && LtQ[0, n, 1] && IntegersQ[2*m, 2*n]
 

rule 3284
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[ 
2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a, b, c 
, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && GtQ[c + d, 0]
 

rule 3481
Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)]))/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[ 
B/d   Int[(a + b*Sin[e + f*x])^m, x], x] - Simp[(B*c - A*d)/d   Int[(a + b* 
Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, 
 B, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3538
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^ 
2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])), x_Symbol] :> Simp[C/(b*d)   Int[Sqrt[a + b*Sin[e + f*x]], x] 
, x] - Simp[1/(b*d)   Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[ 
e + f*x], x]/(Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])), x], x] /; Fre 
eQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0 
] && NeQ[c^2 - d^2, 0]
 
3.6.91.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(712\) vs. \(2(224)=448\).

Time = 5.60 (sec) , antiderivative size = 713, normalized size of antiderivative = 4.82

method result size
default \(-\frac {\sqrt {-\left (-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (-\frac {4 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \Pi \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), -\frac {2 b}{a -b}, \sqrt {2}\right )}{\left (-2 a b +2 b^{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}-\frac {2 a \left (-\frac {b^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}{a \left (a^{2}-b^{2}\right ) \left (2 b \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+a -b \right )}-\frac {\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{2 a \left (a +b \right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}-\frac {b \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{2 \left (a^{2}-b^{2}\right ) a \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}+\frac {b \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{2 \left (a^{2}-b^{2}\right ) a \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}-\frac {3 a b \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \Pi \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), -\frac {2 b}{a -b}, \sqrt {2}\right )}{\left (a^{2}-b^{2}\right ) \left (-2 a b +2 b^{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}+\frac {b^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \Pi \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), -\frac {2 b}{a -b}, \sqrt {2}\right )}{a \left (a^{2}-b^{2}\right ) \left (-2 a b +2 b^{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}\right )}{b}\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(713\)

input
int(cos(d*x+c)^(1/2)/(a+cos(d*x+c)*b)^2,x,method=_RETURNVERBOSE)
 
output
-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-4/(-2*a*b+2*b 
^2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin 
(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c 
),-2*b/(a-b),2^(1/2))-2/b*a*(-1/a*b^2/(a^2-b^2)*cos(1/2*d*x+1/2*c)*(-2*sin 
(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*b*cos(1/2*d*x+1/2*c)^2+a- 
b)-1/2/a/(a+b)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1 
/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2 
*d*x+1/2*c),2^(1/2))-1/2/(a^2-b^2)*b/a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*co 
s(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2) 
^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+1/2/(a^2-b^2)*b/a*(sin(1/2*d* 
x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c) 
^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-3*a/( 
a^2-b^2)/(-2*a*b+2*b^2)*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2 
*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*Ellipt 
icPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))+1/a/(a^2-b^2)/(-2*a*b+2*b^2)*b 
^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin( 
1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c) 
,-2*b/(a-b),2^(1/2))))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2) 
/d
 
3.6.91.5 Fricas [F(-1)]

Timed out. \[ \int \frac {\sqrt {\cos (c+d x)}}{(a+b \cos (c+d x))^2} \, dx=\text {Timed out} \]

input
integrate(cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^2,x, algorithm="fricas")
 
output
Timed out
 
3.6.91.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\sqrt {\cos (c+d x)}}{(a+b \cos (c+d x))^2} \, dx=\text {Timed out} \]

input
integrate(cos(d*x+c)**(1/2)/(a+b*cos(d*x+c))**2,x)
 
output
Timed out
 
3.6.91.7 Maxima [F]

\[ \int \frac {\sqrt {\cos (c+d x)}}{(a+b \cos (c+d x))^2} \, dx=\int { \frac {\sqrt {\cos \left (d x + c\right )}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{2}} \,d x } \]

input
integrate(cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^2,x, algorithm="maxima")
 
output
integrate(sqrt(cos(d*x + c))/(b*cos(d*x + c) + a)^2, x)
 
3.6.91.8 Giac [F]

\[ \int \frac {\sqrt {\cos (c+d x)}}{(a+b \cos (c+d x))^2} \, dx=\int { \frac {\sqrt {\cos \left (d x + c\right )}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{2}} \,d x } \]

input
integrate(cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^2,x, algorithm="giac")
 
output
integrate(sqrt(cos(d*x + c))/(b*cos(d*x + c) + a)^2, x)
 
3.6.91.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {\cos (c+d x)}}{(a+b \cos (c+d x))^2} \, dx=\int \frac {\sqrt {\cos \left (c+d\,x\right )}}{{\left (a+b\,\cos \left (c+d\,x\right )\right )}^2} \,d x \]

input
int(cos(c + d*x)^(1/2)/(a + b*cos(c + d*x))^2,x)
 
output
int(cos(c + d*x)^(1/2)/(a + b*cos(c + d*x))^2, x)